An Algebraic Multigrid Method with Guaranteed Convergence Rate
نویسندگان
چکیده
منابع مشابه
An Algebraic Multigrid Method with Guaranteed Convergence Rate
We consider the iterative solution of large sparse symmetric positive definite linear systems. We present an algebraic multigrid method which has a guaranteed convergence rate for the class of nonsingular symmetric M-matrices with nonnegative row sum. The coarsening is based on the aggregation of the unknowns. A key ingredient is an algorithm that builds the aggregates while ensuring that the c...
متن کاملAn aggregation-based algebraic multigrid method
An algebraic multigrid method is presented to solve large systems of linear equations. The coarsening is obtained by aggregation of the unknowns. The aggregation scheme uses two passes of a pairwise matching algorithm applied to the matrix graph, resulting in most cases in a decrease of the number of variables by a factor slightly less than four. The matching algorithm favors the strongest nega...
متن کاملAn Algebraic Multigrid Method for Linear Elasticity
We present an algebraic multigrid (AMG) method for the efficient solution of linear (block-)systems stemming from a discretization of a system of partial differential equations (PDEs). It generalizes the classical AMG approach for scalar problems to systems of PDEs in a natural blockwise fashion. We apply this approach to linear elasticity and show that the block-interpolation, described in thi...
متن کاملTowards an Algebraic Multigrid Method for Tomographic Image Reconstruction – Improving Convergence of Art
In this paper we introduce a multigrid method for sparse, possibly rankdeficient and inconsistent least squares problems arising in the context of tomographic image reconstruction. The key idea is to construct a suitable AMG method using the Kaczmarz algorithm as smoother. We first present some theoretical results about the correction step and then show by our numerical experiments that we are ...
متن کاملAn Algebraic Multigrid
An algebraic multigrid scheme is presented for solving the discrete Navier-Stokes equations to second-order accuracy using the defect-correction method. Solutions have been obtained for problems involving both structured and unstructured meshes, the resolution and resolution grading being controlled by global and local mesh re-nements. The solver is eecient and robust to the extent that no unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2012
ISSN: 1064-8275,1095-7197
DOI: 10.1137/100818509